Bird Call Database Nests Online

Posted by kuldeep | 7:39 AM | 0 comments »

A growing online library of bird sounds, photos and information offers a new resource for backyard birders and seasoned ornithologists alike.

The Avian Vocalizations Center at Michigan State University, or AVoCet,offers free downloads of bird sounds from around the world. It also features sonograms that visually chart the sounds, photos of birds recorded, Google Earth maps of recording locations and links to other online sound collections.
More than 10,200 recordings from over 3,190 species in 45 countries are now available on AVoCet, "and that's growing quickly," said Pamela Rasmussen, an assistant professor of zoology and assistant curator at the MSU Museum. "Soon recordings and their data from many more species and areas will be available for download from AVoCet."
There are, after all, 10,000 bird species, all of which make sounds of some type. Many birds, such as cardinals, even sing in regional dialects. Some birds have huge vocabularies -- a single male Brown Thrasher is known to give 2,000 different notes.
Author of an exhaustive reference work on the birds of South Asia, Rasmussen has personally recorded on all the continents for this project. Her work in the Philippines alone netted 597 recordings of 120 species, many of which are threatened. Some of those sound types are not publicly available anywhere other than AVoCet.
AVoCet also contains recordings made around the world so far by 65 others, including local ornithologists, professional guides and MSU students from Rasmussen's study abroad and ornithology courses. Zoology department programmer/analyst Patrick Bills built the database and Web site and undergraduate students also contributed.
Digital technology has revolutionized birding, Rasmussen explains, allowing enthusiasts and professionals to more easily record, share and play bird calls. Online access to the AVoCet library allows easy access to sounds, photos and other supporting information via computer and Internet-connected mobile devices.
The ability to identify birds vocally is crucial for monitoring bird movements and populations, including such popular events as the annual Christmas bird counts organized across the country. A comprehensive collection of bird sounds can yield better understanding of habitats, ranges and habits, while allowing more efficient and thorough biodiversity studies, Rasmussen said. "It's very difficult to see birds in a tropical rainforest, but not difficult to hear and recognize them."
Oriented to the scientific community, AVoCet maintains rigorous scholarly standards. Whenever possible, recordings are accompanied by photos and sighting observations that enable independent evaluation, Rasmussen said. Scientists can then accurately map avian biodiversity and perhaps identify new species.
"We know that certain species will go extinct in the near future and, sadly, there's not a lot that can realistically be done about it," Rasmussen said. "However, ornithologists and birders do now have the opportunity to document virtually all the species of birds out there in one way or another, and one major goal of AVoCet is to contribute to this effort."
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by Michigan State University.

A new laser-beam steering system that aims and focuses bursts of light onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison.

Described in the journal Applied Physics Letters, published by the American Institute of Physics, the new system is somewhat like the laser-light-show projectors used at rock concerts and planetariums. But it's much smaller, faster, atom-scale accurate and aimed at the future of computing, not entertainment.
In theory, quantum computers will be able to solve very complex and important problems if their basic elements, 
called qubits, remain in a special "quantum entangled" state for a long enough time for the calculations to be carried out before information is lost to natural fluctuations. One of several promising approaches to quantum computing uses arrays of individual atoms suspended by electromagnetic forces. Pulses of laser light manipulate the internal states of the atoms that represent the qubits, to carry out the calculation. However the lasers must also be focused and aimed so accurately that light meant for one atom doesn't affect its neighbors.
The new system did just that. Tiny micromirrors, each only twice the diameter of a human hair, pointed to each target atom in as little as 5 microseconds, which is about 1,000 times faster than sophisticated beam-steering mirrors developed for optical communications switching, not to mention the still slower units used in light shows. The researchers saw that the laser pulses also correctly manipulated the quantum properties of each target atom -- in this case a line of five rubidium-87 atoms -- without disturbing any neighboring atoms, which were separated by just 8.7 microns, about one-tenth the diameter of a human hair.
"Our experiments demonstrated the crucial requirement that our micromirror system maintain the laser-beam quality necessary to manipulate the internal states of the individual atoms," said Jungsang Kim, leader of the Duke researchers who designed the micromirror system. The atomic physics experiments were performed in Mark Saffman's group at University of Wisconsin-Madison.
The groups plan to continue their collaboration, with future experiments targeting two-qubit gates, which are expected to be the basic building block of quantum logic, and atoms confined in larger two-dimensional arrays.
This work was funded by the Army Research Office, the Intelligence Advanced Research Projects Activity (IARPA), and the National Science Foundation.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by American Institute of Physics, via EurekAlert!, a service of AAAS.

The Large Binocular Telescope Interferometer has taken its first images of the star Beta Peg in the constellation Pictor -- an encouraging start for an instrument designed to probe the cosmic neighborhoods where Earth-like planets could exist.

Eight years in development, the NASA-funded instrument combines beams of light from twin 8.4-meter (28-foot) mirrors mounted atop the Large Binocular Telescope on Mount Graham, Ariz. "By combining the light of the telescopes, we're able to realize its full potential," said Project Manager Tom McMahon of the University of Arizona, Tucson. "Together, the two mirrors form the largest single-mount telescope in the world."
"The quality of the first-light images is wonderful," said the principal investigator for the project, Phil Hinz of the University of Arizona. "The telescope was stable and the instrument was working properly."
With this high-resolution imaging capability, astronomers hope to probe nearby solar systems -- specifically, the areas in these systems where Earth-like planets with liquid water could exist. Though the Large Binocular Telescope Interferometer won't be able to detect Earth-size planets, it will be able to see dust disks that are indicative of planet formation, in addition to detecting large, Jupiter-size planets farther out from the star. These findings will help future, space-based exoplanet missions know where to search for Earth-like planets in our own galactic neighborhood.
With its ability to probe this "habitable zone" of other solar systems, the Large Binocular Telescope Interferometer will also complement the capabilities of other NASA missions -- the Keck Interferometer, which can find dust very close to stars; and the Spitzer Space Telescope, which is adept at observing planet-forming dust that is much more distant.
"This instrument will help complete our picture of what planetary systems look like and be a pathfinder for finding Earth-like planets that are close by," Hinz said.
With a major upgrade of the Large Binocular Telescope's adaptive optics system scheduled for next year, the interferometer will undergo testing and commissioning for the majority of 2011, and during that time, scientific observations will begin.
"This is the highest-resolution instrument of its kind in the world," McMahon said. "We won't just be able to image exoplanets, but extragalactic objects, nebulae and galaxies. It's taken time to make sure it works as envisioned, but now it's time to do science."
The Large Binocular Telescope Interferometer is funded by NASA and managed by Ben Parvin at NASA's Jet Propulsion Laboratory, Pasadena, Calif., as part of NASA's Exoplanet Exploration Program. The instrument and product development are provided by the University of Arizona, Tucson.
More information about the Large Binocular Telescope Interferometer can be found at: http://lbti.as.arizona.edu/LBTI-Main/Project.html
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by NASA/Jet Propulsion Laboratory. The original article was written by Josh Rodgriguez

A Swarm of Ancient Stars

Posted by kuldeep | 7:35 AM | 0 comments »

The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image.

Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time -- typically over 10 billion years ago -- they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar 
behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve.
Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey -- a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited to the spectroscopic study of densely populated stellar fields, such as globular clusters.
M107 is not visible to the naked eye, but, with an apparent magnitude of about eight, it can easily be observed from a dark site with binoculars or a small telescope. The globular cluster is about 13 arcminutes across, which corresponds to about 80 light-years at its distance, and it is found in the constellation of Ophiuchus, north of the pincers of Scorpius. Roughly half of the Milky Way's known globular clusters are actually found in the constellations of Sagittarius, Scorpius and Ophiuchus, in the general direction of the centre of the Milky Way. This is because they are all in elongated orbits around the central region and are on average most likely to be seen in this direction.
Messier 107 was discovered by Pierre Méchain in April 1782 and it was added to the list of seven Additional Messier Objects that were originally not included in the final version of Messier's catalogue, which was published the previous year. On 12 May 1793, it was independently rediscovered by William Herschel, who was able to resolve this globular cluster into stars for the first time. But it was not until 1947 that this globular cluster finally took its place in Messier's catalogue as M107, making it the most recent star cluster to be added to this famous list.
This image is composed from exposures taken through the blue, green and near-infrared filters by the Wide Field Camera (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by ESO.

Astronomers have traced the waxing and waning light of exploding stars more closely than ever before and seen patterns that aren't yet accounted for in our current understanding of how these eruptions occur.

Using data from a sensitive instrument aboard a satellite that images the entire sky every 102 minutes, they studied four of these stars, or novae, that exploded so violently their light would have been visible without a telescope and measured their brightness over the course of the outburst.
Three of the novae stalled before reaching a peak, and all flickered or flared as the explosions ran their course, 
they report in The Astrophysical Journal.
The instrument they used -- the Solar Mass Ejection Imager -- was developed by a team led by astrophysicist Bernard Jackson at the Center for Astrophysics and Space Sciences at the University of California, San Diego, to study the sun. Rebekah Hounsell, a graduate student at Liverpool John Moores University in Britain made the measurements while visiting UC San Diego.
Because starlight is a distraction for Jackson's team, noise they must subtract from their data so that they can focus on the sun's outer corona and the heliosphere, they make detailed maps of stellar light, including its brightness.
In those maps Hounsell identified the four novae by finding points of light that rapidly brightened and dimmed over the course of days.
Wavering Light
Other astronomers had observed a pause in the brightening of novae, or "pre-maximum halt" before, but some thought it an anomaly. The precise time-scale and repeated observations of the current study confirms it, they authors say.
"The reality of this halt as found in all three of the fast-declining novae observed is a challenge to detailed models of the nova outburst," said one of the authors, astrophysicist Mike Bode, of Liverpool John Moores University.
Two independent teams of theorists have already begun to refine their models of how novae explode in response.
Astronomers typically characterize novae's changing light with curves smoothly fit to more sporadic observations, but the rapid cadence of the solar imager captured glimmers that hadn't been observed before. All flickered as their light dimmed and one nova, the slowest of the four to dim, flared brightly twice after reaching its peak luminosity.
These novae are white dwarf stars that steal matter, in the form of hydrogen, from a companion star, often an aging, expanding red giant. As hydrogen accumulates the white dwarf's gravity pulls it in and condenses it until it ignites, setting off a runaway nuclear fusion reaction.
The team speculates that the post-peak flares may correspond to changes in the dynamics of that reaction that still need to be explained.
Catching Missing Stars
"Before Hounsell looked through these data, most novae were observed only after their peak luminance. The instrument's very even cadences and uniformly exposed images allow us to trace the entire evolution of these explosions as they brighten and dim," UC San Diego's Jackson said.
Data from the imager, which has been in operation aboard the Coriolis satellite since January 2003, allows astronomers to measure novae that they initially missed.
"Even today novae are mainly discovered by amateur astronomers around the world who then alert their professional counterparts to conduct observations," Hounsell said.
As many as five novae bright enough to be detected by SMEI explode in our galaxy each year, Allen Shafter, astronomy professor at San Diego State University and one of the co-authors of the report have previously estimated, but more than half have gone undetected.
"The instrument assures that the brightest and most rapidly evolving novae -- ones that brighten and then fade within a few days -- are not overlooked," Shafter said. "The high time resolution of these observations has opened up a new window into the study of novae in our galaxy."
Bernard Jackson's research at UC San Diego is supported by the National Science Foundation and NASA. Allen Shafter's work at San Diego State University is supported by the National Science Foundation.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of California - San Diego. The original article was written by Susan Brown.

Researchers at Umeå Plant Science Center in Sweden discovered, in collaboration with the Syngenta company, a previously unknown gene in sugar beets that blocks flowering. Only with the cold of winter is the gene shut off, allowing the sugar beet to blossom in its second year. The discovery of this new gene function makes it possible to control when sugar beets bloom.

The new findings were recently published in the journal Science.
Scientists at Umeå Plant Science Center and the international company Syngenta, in a joint study of genetic regulation in the sugar beet, have discovered an entirely new principle for how flowering can be controlled. The 
study, which was co-directed by Professorn Ove Nilsson, of the Swedish University of Agricultural Sciences 
(SLU), and Syngenta scientist Dr. Thomas Kraft, showed that there is a gene in the sugar beet that was previously unknown.
"When we studied a gene in the sugar beet that usually stimulates blooming in other plants, we made a very surprising discovery: in the sugar beet evolution has developed a 'sister gene' that has taken on the exact opposite function, namely, to inhibit blossoming. For biennial sugar beets this means that they can't flower in their first year. Once the plants have been exposed to the cold of winter at the end of the first year, the 'gene blockade is lifted,' and the sugar beets can bloom in their second year of life," says Ove Nilsson about the function of the newly discovered flowering gene.
The researchers speculate that the development of the inhibiting sister gene was an important factor in enabling biennial sugar beets to evolve from an annual to a biennial plant. Furthermore, plant researchers in Umeå and Landskrona have shown that it is possible to manipulate the "flowering gene" in such a way as to leave the gene constantly "turned on," that is, to block blooming, and thereby prevent it from being turned off after winter.
"In that way it's possible to fully control the flowering time of the sugar beet. This enables us to develop a so-called 'winter beet,' that is, a sugar beet that can be planted in the autumn and then will continue to grow throughout the following growth season without blossoming," says Thomas Kraft at Syngenta Seeds.
"A winter beet has be a high priority for sugar beet growers, since it is estimated to be able to increase the yield by about 25 percent and at the same time allow a more extended harvesting period. Traditional breeding has failed to produce such a plant. Syngenta Seeds is now going to move on to more in-depth tests of this potential new winter beet."
The research work in this project has been primarily conducted by an industrial doctoral candidate, Pierre Pin, with funding from the Swedish Research Council and Syngenta Seeds AB.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided byExpertanswer, via AlphaGalileo.

The ability to tolerate aggression is partly genetic, UCLA life scientists report in the first study to demonstrate a genetic component to a social network trait in a non-human population.

The ability to tolerate aggression is passed on across generations; there is genetic variation in the ability to tolerate aggression," said the study co-author Daniel T. Blumstein, professor and chair of ecology and evolutionary biology at UCLA.
Blumstein, a leader in the field of applying social network statistics to animals, and his colleagues studied four groups of yellow-bellied marmots, which are related to squirrels, over six years in the Rocky Mountains of Colorado. Each group included 15 to 30 marmots.
To study the social behavior of the animals, the biologists applied the same type of social network statistics that Google and Facebook use to study human behavior.
"We are gaining a novel insight into the importance of tolerating aggressive interactions," Blumstein said. "Those relationships are important for social stability and reproductive success. I believe these ideas are generalizable well beyond marmots."
The research, funded by the National Science Foundation and the National Geographic Society, is currently published in the online early edition of the journal Proceedings of the National Academy of Sciences and will appear Dec. 14 in the journal's print edition.
The paper's lead author, Amanda Lea, a former UCLA honors student who is now a research assistant in ecology
 and evolutionary biology, spent two summers observing the marmots for four hours a day and analyzing their behavior -- from far enough away not to affect it. She can tell the marmots apart.
"We found that having many friendly interactions gave marmots fitness benefits -- these marmots reproduced more. But surprisingly, we found that marmots embedded in a network of unfriendly interactions also showed higher fitness levels," Lea said. "Over a lifetime, a marmot that is very social will have more offspring than a less social one. But surprisingly, so will a marmot that is getting picked on frequently."
"The family unit is important, even if their interactions are not always nice," Blumstein said of the finding.
Like people, some marmots are quite friendly, some keep to themselves and some are more aggressive, Lea said. They live in family groups, groom one another, sit next to one another, play together and, much less frequently, fight. They live up to 15 years, Blumstein said.
Female marmots typically have three to nine offspring a year and can have as many as 60 over a lifetime. Some males can have as many as 150 or more, although most have many fewer, Blumstein said.
Blumstein, Lea and colleagues applied social networking statistics, computational analysis and quantitative genetics to marmots' social behavior. They studied, for example, whether interactions were friendly or aggressive, and they applied state-of-the-science statistical techniques to estimate the heritability of traits and whether particular traits are correlated with reproductive success.
With his colleagues, Blumstein, who has studied marmots for more than 20 years to learn about their biology and evolution, quantified the genetic component to the marmots' social behaviors. Genetic factors account for some 10 percent of the differences among marmots, while about 20 percent of the variation is due to the social environment, they calculated.
"There is a genetic component to certain social behaviors, and we have quantified that," Blumstein said.
Because social behavior has a genetic component, he said, a social trait has the ability to carry on across generations and evolve.
"Social network statistics can be a useful way to study a variety of animals and understand social evolution," Blumstein said. "This study says that traits we define using social network analyses can evolve, and that has not been demonstrated like this before."
The life scientists made predictions and found some surprising results.
"We predicted that direct and immediate relationships, over which an individual has control, might have a higher heritability (a genetic basis) than indirect relationships," Blumstein said.
"We found that direct measures were heritable and indirect measures were not; we expected this," he said. "However, within these direct relationships, you might expect that things I do to you, things I have control over, would have significant heritability, but what we found is the opposite: the ability to tolerate aggression is heritable, and we found that fascinating. Tolerating aggression is, surprisingly, very important in marmots and perhaps in other species."
"Many people have perhaps not recognized the benefits of aggressive interactions, even if you are on the receiving end," Lea said.
Blumstein said the findings have important implications for why animals are social.
These marmots in Colorado have been studied since 1962 -- one of the longest-running animal studies. Blumstein has studied marmots worldwide, and these for more than a decade.
"Once we had a good genealogy, a good understanding of the genetic relationships among them, we were able to ask questions about the heritability of various behaviors -- the ability of a behavior to be passed on from generation to generation," he said.
Why has Blumstein devoted so much of his research to studying these animals?
"Most species do not have an address, but marmots do, and because they have an address, you can set up camp and study them," he said. "You can go to their burrows every day and watch them. We can learn a lot about evolution, the adaptive value of sociality and the adaptive value of complex communication by studying marmots and ground squirrels."
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of California - Los Angeles. The original article was written by Stuart Wolpert

Geophysical phenomena such as the dynamics of the atmosphere and ocean circulation are typically modeled mathematically by tracking the motion of air or water particles. These mathematical models define velocity fields that, given (i) a position in three-dimensional space and (ii) a time instant, provide a speed and direction for a particle at that position and time instant.

"Geophysical phenomena are still not fully understood, especially in turbulent regimes," explains Gary Froyland at the School of Mathematics and Statistics and the Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS) at the University of New South Wales in Australia.
"Nevertheless, it is very important that scientists can quantify the 'transport' properties of these geophysical 
systems: Put very simply, how does a packet of air or water get from A to B, and how large are these packets? An example of one of these packets is the Antarctic polar vortex, a rotating mass of air in the stratosphere above Antarctica that traps chemicals such as ozone and chlorofluorocarbons (CFCs), exacerbating the effect of the CFCs on the ozone hole," Froyland says.
In the American Institute of Physics' journal Chaos, Froyland and his research team, including colleague Adam Monahan from the School of Earth and Ocean Sciences at the University of Victoria in Canada, describe how they developed the first direct approach for identifying these packets, called "coherent sets" due to their nondispersive properties.
This technique is based on so-called "transfer operators," which represent a complete description of the ensemble evolution of the fluid. The transfer operator approach is very simple to implement, they say, requiring only singular vector computations of a matrix of transitions induced by the dynamics.
When tested using European Centre for Medium Range Weather Forecasting (ECMWF) data, they found that their new methodology was significantly better than existing technologies for identifying the location and transport properties of the vortex.
The transport operator methodology has myriad applications in atmospheric science and physical oceanography to discover the main transport pathways in the atmosphere and oceans, and to quantify the transport. "As atmosphere-ocean models continue to increase in resolution with improved computing power, the analysis and understanding of these models with techniques such as transfer operators must be undertaken beyond pure simulation," says Froyland.
Their next application will be the Agulhas rings off the South African coast, because the rings are responsible for a significant amount of transport of warm water and salt between the Indian and Atlantic Oceans.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by American Institute of Physics, via EurekAlert!, a service of AAAS.

The role a key molecule plays in a plant's ability to remember winter, and therefore bloom in the spring, has been identified by University of Texas at Austin scientists



Many flowering plants bloom in bursts of color in spring after long periods of cold in the winter. The timing of blooming is critical to ensure pollination, and is important for crop production and for droves of people peeping at wildflowers.
One way for the plants to recognize the spring -- and not just a warm spell during winter -- is that they "remember" they've gone through a long enough period of cold.
"Plants can't literally remember, of course, because they don't have brains," says Sibum Sung, assistant 
professor in the Section of Molecular Cell and Developmental Biology. "But they do have a cellular memory of winter, and our research provides details on how this process works."
The process is known as vernalization, whereby a plant becomes competent to flower after a period of cold. And though it is common for many plants adapted to temperate climates, including important crops like winter wheat, it has not been until the past decade or so that scientists have begun to understand the process's genetic and molecular underpinnings.
Sung and postdoctoral fellow Jae Bok Heo have now discovered that a long, non-coding RNA molecule, named COLDAIR, is required for plants to set up a memory of winter.
They published their work on the Arabidopsis plant in ScienceExpress on Dec. 2.
This is how it works: In fall, a gene called FLC actively represses floral production. A random bloom in fall could be a waste of precious energy.
But after a plant has been exposed to 20 days of near-freezing temperatures, the scientists found that COLDAIR becomes active. It silences the FLC gene, a process that is completed after about 30 to 40 days of cold. With the FLC silenced as temperatures warm in the spring, other genes are activated that initiate blooming.
COLDAIR helps create a cellular memory for a plant, letting it know it has been through 30 or more days of cold.
But, how does the cold actually turn on COLDAIR?
"That is one of the next questions we have," says Sung. "How do plants literally sense the cold?"
Answering these kinds of basic questions could lead to crop improvements and will be important to grasp as climate changes alter the length of the winter season, with possible repercussions to vernalization in plants around the world.
This research was supported with funds from the National Science Foundation and The University of Texas at Austin.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of Texas at Austin, via EurekAlert!, a service of AAAS.

Television's favourite Time Lord could not exist without his trusty sonic screwdriver, as it's proved priceless in defeating Daleks and keeping the Tardis in check. Now Doctor Who's famous cure-all gadget could become a reality for DIY-ers across the world, say engineers.

Ultrasonic engineers at Bristol University and The Big Bang: UK Young Scientists and Engineers Fair (http://www.thebigbangfair.co.uk/) are uncovering how a real life version of the fictional screwdriver -- which uses sonic technology to open locks and undo screws -- could be created.
Professor of Ultrasonics, Bruce Drinkwater, who is working with The Big Bang to inspire young scientists of the future, says the answer lies in ultrasonic sound waves. By operating the waves at frequencies way beyond the 
realms of human hearing, they can be used to apply forces to objects.
The technology is already being trialled in modern manufacturing to fix parts together and ultrasonic force fields are being developed within the medical field to separate diseased cells from healthy cells. Professor Drinkwater and The Big Bang team are now exploring whether super powerful versions of these sound beams could bring Doctor Who's iconic device to life.
He says: "Doctor Who is renowned for bending the rules of science. But technology has radically moved on since the Doc first stepped out of his Tardis in the sixties. Whilst a fully functioning time machine may still be light years away, engineers are already experimenting with ultrasonic waves to move and manipulate small objects."
Engineers are looking into how ultrasonic waves can be spun at high speed to create a twisting force similar to that of a miniature tornado, which could undo screws remotely. They have also experimented with rotating ultrasonic force fields which would act like the head of a real screwdriver.
Doctor Who and DIY fans may still have to wait before they can add the sonic screwdriver to their Christmas wish lists. However, Professor Drinkwater hopes his work to make the impossible possible will inspire engineers, technologists and inventors of the future.
"Doctor Who's adventures have captured the imaginations of millions, young and old. And, however far fetched the Time Lord's encounters may seem, there are engineers and scientists out there who are using their skills to bring the magic to life.
"The sonic screwdriver may still be sometime in the making but ultrasonic technology is already making its mark in the medical and manufacturing arenas with some exciting results."
Professor Drinkwater has teamed up with The Big Bang, one of the UK's biggest celebrations of science and engineering, to inspire young people from all walks of life.
Taking place at ICC London ExCeL from 10 -- 12 March 2011, The Big Bang offers young people the chance to take part in a host of free interactive shows and workshops including Sky One's Brainiac Live! and BBC One's Bang Goes the Theory. It is also the ideal place to find out about the exciting career options available in science and engineering. The Big Bang hosts the finals of the prestigious National Science & Engineering Competition and also kicks off National Science & Engineering Week 2011.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of Bristol.

Researchers have found compelling evidence for an extensive biological community living in porous rock deep beneath the seafloor. The microbes in this hidden world appear to be an important source of dissolved organic matter in deep ocean water, a finding that could dramatically change ideas about the ocean carbon cycle.



Matthew McCarthy, associate professor of ocean sciences at the University of California, Santa Cruz, led a team of researchers from several institutions who analyzed the dissolved organic matter in fluids from natural vents on the seafloor and from a borehole that penetrated the basement rock deep beneath the seafloor sediments. Their results, to be published in the January issue ofNature Geoscience and currently available online, indicate that the dissolved material in those fluids was synthesized by microbes living in the porous basalt rock of the upper 
oceanic crust. These microbes are "chemoautotrophic," meaning they derive energy from chemical reactions and are completely independent of the sunlight-driven life on the surface of our planet.
Chemoautotrophic microbes (bacteria and archaea) have been found in deep-ocean sediments and at hydrothermal vents, where hot water flows out through newly formed volcanic rock at mid-ocean ridges. The idea that a much larger biological community might exist in habitats within the cooler upper-crustal rock that lies under large areas of the seafloor has been an exciting, but controversial, hypothesis, McCarthy said.
"What is really important about this is the huge size and extent of such systems," he said. "This study provides the strongest evidence yet that a really large biosphere exists in the warm fluids in the porous upper-oceanic crust. It's large not just in area, but in productivity. In the same way that forests and grasslands fix carbon and produce organic matter on land, our data suggest these microbes produce enough organic matter to export carbon to other systems. That's a real expansion of our ideas about the oceanic carbon cycle."
The existence of an extensive "alternate biosphere" beneath the ocean floor may also influence the thinking of astrobiologists about where life might exist elsewhere in our solar system, McCarthy said. Saturn's moon Europa, for example, is thought to have liquid oceans beneath its icy crust, prompting speculation about the possibility of life evolving there.
McCarthy's team found evidence of the hidden microbial ecosystem beneath the seafloor by analyzing carbon isotopes in the organic molecules in their samples. Of the three naturally occurring isotopes of carbon, carbon-12 is the most abundant, and both carbon-12 and the slightly heavier carbon-13 are stable. Carbon-14 is an unstable isotope formed in the upper atmosphere through the action of cosmic rays, and its steady decay is the basis for carbon-dating of organic material.
The ratios of these different isotopes provide telltale clues to the origins of organic molecules and the carbon atoms in them. Carbon-13 analysis, for example, indicates what kind of organisms synthesized the molecules. "Carbon-13 is really useful for looking at the origins of organic matter, because there are distinctive signatures for different sources," McCarthy said. "Chemosynthetic bacteria have wildly different signatures than anything else, and our carbon-13 results match the classic chemosynthetic values."
The team's carbon-14 analysis showed where the carbon in the organic molecules came from. If it came from the carbon in crustal rocks, there would be no carbon-14 at all. Instead, the carbon-14 signature indicated that the carbon came from dissolved inorganic carbon in deep seawater. This inorganic carbon pool consists of carbonate ions formed when carbon dioxide from the atmosphere dissolves in ocean water.
Carbon-14 dating indicated that the carbon in the dissolved organic matter is 11,800 to 14,400 years old--in other words, that's how long ago the carbon now in those organic molecules was absorbed from the atmosphere into the ocean. That's about three times older than the carbon-14 age of the overall pool of dissolved organic matter in the deep ocean. This suggests that water circulates very slowly through the deep microbial habitat in the rocks of the upper crust.
"The observation that this deep biosphere is apparently pumping very old, carbon-14-depleted dissolved organic matter into the deep ocean may be very important to our understanding of biogeochemical cycles," McCarthy said. "The reservoir of dissolved organic matter in the deep ocean is one of the largest active pools of organic carbon in the global carbon cycle, about the same size as the pool of atmospheric carbon dioxide."
The age of the deep-ocean water is used to estimate how quickly it turns over and returns to the surface layers. "If this very old pool of carbon is being mixed in and biasing the measurements, the deep-ocean water may actually be turning over more quickly than we thought," McCarthy said.
To obtain their samples, the researchers used custom-built equipment and a remotely operated deep-sea submersible, the ROV Jason II, from Woods Hole Oceanographic Institution (WHOI). Stainless-steel probes driven into an exposed rock outcrop and a specialized set of deep-sea sampling platforms designed at the University of Washington (UW) enabled them to recover the unprecedented quantities of uncontaminated crustal fluids needed for the analyses. The samples were collected during two expeditions to the Juan de Fuca Ridge system off the coast of Washington and British Columbia.
The key carbon-14 measurements on the recovered organic molecules were done through collaborations with the Lawrence Livermore National Laboratory's accelerator facility and the Keck Carbon Cycle Accelerator facility at UC Irvine. In addition to McCarthy, the coauthors include Steven Beaupré of WHOI; UCSC graduate student Brett Walker; Ian Voparil of Shell International Exploration and Production; Thomas Guilderson of Lawrence Livermore National Laboratory; and Ellen Druffel of UC Irvine. H. Paul Johnson and Tor Bjorkland of the UW School of Oceanography were instrumental in the development and deployment of deep-sea samplers and probes.
This research was supported by the National Science Foundation, the University of California, and the Packard Foundation.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of California - Santa Cruz.

When an antibiotic is consumed, researchers have learned that up to 90 percent passes through a body without metabolizing. This means the drugs can leave the body almost intact through normal bodily functions.

In the case of agricultural areas, excreted antibiotics can then enter stream and river environments through a variety of ways, including discharges from animal feeding operations, fish hatcheries, and nonpoint sources such as the flow from fields where manure or biosolids have been applied. Water filtered through wastewater treatment 
plants may also contain used antibiotics.
Consequently, these discharges become "potential sources of antibiotic resistance genes," says Amy Pruden, a National Science Foundation CAREER Award recipient, and an assistant professor of civil and environmental engineering at Virginia Tech.
"The presence of antibiotics, even at sub-inhibitory concentrations, can stimulate bacterial metabolism and thus contribute to the selection and maintenance of antibiotic resistance genes," Pruden explains. "Once they are present in rivers, antibiotic resistance genes are capable of being transferred among bacteria, including pathogens, through horizontal gene transfer."
The World Health Organization and the Center for Disease Control recognize antibiotic resistance "as a critical health challenge of our time," Pruden writes in a paper published in a 2010 issue of Environmental Science and Technology.
Pruden says reducing the spread of antibiotic resistance is a critical measure needed to prolong the effectiveness of currently available antibiotics. This is important since "new drug discovery can no longer keep pace with emerging antibiotic-resistant infections," Pruden says.
Pruden who has developed the concept of antibiotic resistance genes as environmental pollutants has an international reputation in applied microbial ecology, environmental remediation, and environmental reservoirs of antimicrobial resistance.
In her work outlined in the Environmental Science and Technology article, she and her co-authors, H. Storteboom, M. Arabi and J.G. Davis, all of Colorado State University, and B. Crimi of Delft University in The Netherlands, identified specific patterns of antibiotic resistance gene occurrence in a Colorado watershed. Identification of these patterns represents a major step in being able to discriminate between agricultural and wastewater treatment plant sources of these genes in river environments.
They assert that such unique patterns of antibiotic resistance gene occurrence represent promising molecular signatures that may then be used as tracers of specific manmade sources.
In their study they identified three wastewater treatment plant sites, six animal feeding operation locations, and three additional locations along a pristine region of the Poudre River, in an upstream section located in the Rocky Mountains. They compared the frequency of detection of 11 sulfonamide and tetracycline antibiotic resistance genes.
Their findings showed detection of one particular antibiotic resistance gene in 100 percent of the treatment plant and animal feeding operations, but only once in the clean section of the Poudre River.
As they are able to differentiate between human and animal sources of the antibiotic resistance genes, Pruden and her colleagues believe they can "shed light on areas where intervention can be most effective in helping to reduce the spread of these contaminants through environmental matrixes such as soils, groundwater, surface water and sediments.
"This study advances the recognition of antibiotic resistance genes as sources to impacted environments, taking an important step in the identification of the dominant processes of the spreading and transport of antibiotic resistance genes."
The Colorado Water Resources Research Institute and a USDA Agricultural Experiment Station provided funding for this study in addition to Pruden's NSF award.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by Virginia Tech, via EurekAlert!, a service of AAAS.

Researchers from the Universidad Pablo de Olavide (UPO) and the Universidad de Sevilla (US) have found patterns of behaviour that occur before an earthquake on the Iberian peninsula. The team used clustering techniques to forecast medium-large seismic movements when certain circumstances coincide.

"Using mathematical techniques, we have found patterns when medium-large earthquakes happen, that is, earthquakes greater than 4.4 on the Richter scale," said Francisco Martínez Álvarez, co-author of the study and a
 senior lecturer at the UPO.
The research, which will be published this month by the journal Expert Systems with Applications, is based on the data compiled by the Instituto Geográfico Nacional on 4,017 earthquakes between 3 and 7 on the Richter scale that occurred on the Iberian Peninsula and in the surrounding waters between 1978 and 2007.
The scientists applied clustering techniques to the data, which allowed them to find similarities between them and discover patterns that will help to forecast earthquakes.
The team concentrated on the two seismogenic regions with the most data (The Alboran Sea and the Western Azores-Gibraltar fault region) analysing three attributes: the magnitude of the seismic movement, the time elapsed since the last earthquake and the change in a parameter called the b-value from one earthquake and the other. The b-value reflects the tectonics of the region under analysis.
A high b-value means earthquakes are predominantly small in size and, therefore, the land has a low level of resistance. In contrast, a low value indicates that there are a relatively similar number of large and small seismic movements, which implies the land is more resistant.
Successful Forecast Probability Greater than 80%
"We have discovered the strong relationship between earthquakes and the parameter b-value, recording accuracy rates of more than 80%," Antonio Morales Esteban, another of the co-authors of the study and a senior lecturer at the US highlighted. "After the calculations had been performed, providing the circumstances and sequences we have determined to be forerunners occur, we obtain a significant success probability."
The technique summarises the forecasts in two factors: sensitivity (probability of an earthquake occurring after the patterns detected occur) and specificity (probability of an earthquake not occurring when no patterns have occurred).
The results reflect a sensitivity of 90% and specificity of 82.56% for the Alboran Sea region and 79.31% and 90.38% respectively for the seismogenic region of the Western Azores-Gibraltar Fault.
That is, there is a high probability of an earthquake in these regions immediately after the patterns discovered occur (high sensitivity) and, moreover, on most of such occasions, they only occur after the patterns discovered (high specificity).
At present the team is analysing the same data using their own algorithms based on "association rules," other mathematical techniques used to discover common events or those which fulfil specific conditions within a set of events.
"The results are promising, although I doubt we will ever be able to say that we are capable of forecasting an earthquake 100% accurately," Martínez Álvarez conceded.
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by FECYT - Spanish Foundation for Science and Technology, viaEurekAlert!, a service of AAAS.

In a study of ex-pro athletes, researchers found that a specialized imaging technique called magnetic resonance spectroscopy (MRS) may help diagnose chronic traumatic encephalopathy (CTE), a disorder caused by repetitive head trauma that currently can only be definitively diagnosed at autopsy. Results of the study were presented at the annual meeting of the Radiological Society of North America (RSNA).

"The devastating effects of brain injuries suffered by pro football players who repeatedly suffered concussions and subconcussive brain trauma during their careers have put the spotlight on CTE," said Alexander P. Lin, Ph.D., a principal investigator at the Center for Clinical Spectroscopy at Brigham and Women's Hospital in Boston. "However, blows to the head suffered by all athletes involved in contact sports are of increasing concern."
According to the Centers for Disease Control and Prevention, an estimated 3.8 million sports- and recreation-related concussions occur in the U.S. each year. In addition, subclinical concussions -- injuries that cannot be diagnosed as concussions but have similar effects -- are often unrecognized.
Studies have shown that individuals who suffer repetitive brain trauma are more likely to experience ongoing problems, from permanent brain damage to long-term disability.
CTE is a degenerative brain disease caused by repeated brain trauma and marked by a buildup of abnormal proteins in the brain. CTE has been associated with memory difficulty, impulsive and erratic behavior, depression and eventually, dementia.
"Cumulative head trauma invokes changes in the brain, which over time can result in a progressive decline in memory and executive functioning in some individuals," Dr. Lin said. "MRS may provide us with noninvasive, early detection of CTE before further damage occurs, thus allowing for early intervention."
In Dr. Lin's study, conducted in collaboration with the Boston University Center for the Study of Traumatic Encephalopathy (CSTE), five retired professional male athletes from football, wrestling and boxing with suspected CTE and five age- and size-matched controls between the ages of 32 and 55 were examined with MRS. In MRS, sometimes referred to as "virtual biopsy," a powerful magnetic field and radio waves are used to extract information about chemical compounds within the body, using a clinical MR scanner.
The results revealed that compared with the brains of the control patients, the brains of the former athletes with suspected CTE had increased levels of choline, a cell membrane nutrient that signals the presence of damaged tissue, and glutamate/glutamine, or Glx. MRS also revealed altered levels of gamma-aminobutyric acid (GABA), aspartate, and glutamate in the brains of former athletes.
"By helping us identify the neurochemicals that may play a role in CTE, this study has contributed to our understanding of the pathophysiology of the disorder," Dr. Lin said.
For example, the amino acid and neurotransmitter glutamate is involved in most aspects of normal brain function and must be present in the right places and at the right concentration in order for the brain to be healthy -- too much or too little can be harmful.
"Being able to diagnose CTE could help athletes of all ages and levels, as well as war veterans who suffer mild brain injuries, many of which go undetected," Dr. Lin said.
Results of CSTE neuropathological studies of retired football players and other athletes have led to significant changes in the NFL, as well as collegiate and youth sports. Recently, the researchers found evidence of CTE in 21-year-old Owen Thomas, the University of Pennsylvania football captain who committed suicide in April 2010.
Coauthors are Saadallah Ramadan, Ph.D., Hayden Box, B.S., Peter Stanwell, Ph.D., and Robert Stern, Ph.D. Dr. Lin's research team is led by Carolyn Mountford, D.Phil. Other collaborators include Ann McKee, M.D., Robert Cantu, M.D., and Christopher Nowinski.

Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided byRadiological Society of North America.